A list of statements/theorems that you should be able to prove, together with the main idea of the proof for some of them.

1. If $f: X \to Y$ is a map and $A_1, A_2 \subset X, B_1, B_2 \subset Y$ are subsets, then

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2).$$

- 2. If A and B are countable sets, then $A \times B$ is countable. [If you write the elements of $A \times B$ in a grid, you can list them by following diagonals.]
- 3. The set of rationals is countable. [You can write \mathbf{Q} as a subset of $\mathbf{Z} \times \mathbf{Z}$ and use the previous result]
- 4. The set of infinite sequences whose elements are all 0 or 1 is uncountable. [If you list a countable collection of such sequences, you can always construct a new sequence which differs from all the ones in the list]
- 5. Suppose that M, N are subsets of a metric space X. The closure operation satisfies the following properties:
 - (a) If $M \subset N$ then $[M] \subset [N]$.
 - (b) [[M]] = [M].
 - (c) $[M \cup N] = [M] \cup [N].$
 - (d) $[\emptyset] = \emptyset$.
- 6. Closed and open subsets of a metric space satisfy the following properties:
 - (a) The intersection of an arbitrary collection of closed sets is closed.
 - (b) The union of finitely many closed sets is closed.
 - (c) The intersection of finitely many open sets is open.
 - (d) The union of an arbitrary collection of open sets is open.
- 7. A subset $M \subset R$ in a metric space R is open if and only if the complement $R \setminus M$ is closed. [A point $x \in M$ is an interior point of M if and only if x is not a contact point for $R \setminus M$.]
- 8. Every convergent sequence in a metric space is a Cauchy sequence. [If $\rho(x_n, x) < \epsilon/2$ and $\rho(x_m, x) < \epsilon/2$ then $\rho(x_n, x_m) < \epsilon$ by the triangle inequality.]
- 9. (Nested sphere theorem) Let R be a complete metric space, and $\overline{B}_{r_k}(x_k)$ a sequence of closed balls in R such that

$$\overline{B}_{r_1}(x_1) \supset \overline{B}_{r_2}(x_2) \supset \dots,$$

and $r_k \to 0$ as $k \to \infty$. Then the intersection $\bigcap_{k\geq 1} \overline{B}_{r_k}(x_k)$ is non-empty. [Show that $\{x_k\}$ is a Cauchy sequence. The limit must be in all of the balls because they are closed.] 10. (Baire's theorem) Let R be a complete metric space, and suppose that

$$R = \bigcup_{k=1}^{\infty} A_k$$

for a sequence of subsets $A_k \subset R$. Then it is not possible that all of the A_k are nowhere dense.

[It a set A is nowhere dense, then every closed ball \overline{B} in R contains a smaller closed ball $\overline{B}' \subset \overline{B}$ which is disjoint from A. Use this to obtain a nested sequence of closed balls $\overline{B}_1 \supset \overline{B}_2 \supset \ldots$, such that \overline{B}_k is disjoint from A_k , and apply the nested sphere theorem.]

11. Let R be a complete metric space, and $F: R \to R$ a map such that for some $\alpha < 1$ we have

$$\rho(F(x), F(y)) \le \alpha \rho(x, y)$$

for all $x, y \in R$. Then there exists a unique point $x \in R$ for which F(x) = x. [Pick any $x_0 \in R$ and define x_n inductively by $x_n = F(x_{n-1})$. Use the contraction property to show that this sequence is a Cauchy sequence, and the limit is a fixed point of F.]

- 12. A map $f: X \to Y$ between topological spaces is continuous, if and only if $f^{-1}(U)$ is open for every open set $U \subset Y$.
- 13. The interval [0,1] is connected. [If $U \subset [0,1]$ is non-empty, open and closed, then show that $\sup U = 1$, and so $1 \in U$. The same is true for the complement of U. So we cannot write [0,1] as the disjoint union of two non-empty open subsets.]
- 14. If a topological space X is path connected, then it is connected. [If X were not connected, then $X = U \cup V$ for two non-empty disjoint open subsets. Get a contradiction by connecting points $x \in U$ and $y \in V$ using a path, and using that [0, 1] is connected.]
- 15. Let $f: X \to Y$ be continuous, and suppose that X is connected. Then f(X) is connected. [If $f(X) = U \cup V$ with U and V disjoint, then $X = f^{-1}(U) \cup f^{-1}(V)$ with $f^{-1}(U)$ and $f^{-1}(V)$ disjoint.]
- 16. A topological space X is compact if and only if every centered system of closed sets in X has non-empty intersection.
- 17. If X is compact and $F \subset X$ is closed, then F is compact. [If $\{U_{\alpha}\}$ is an open cover of F, then $\{U_{\alpha}\}$ together with $X \setminus F$ gives an open cover of X]
- 18. Suppose that X is a Hausdorff space, and $K \subset X$ is compact. Then K is closed. [Suppose $y \notin K$. For all $x \in K$ there are disjoint open neighborhoods $x \in U_x$ and $y \in V_x$. Finitely many of the U_x cover K, so the intersection of the corresponding sets V_x is a neighborhood of y disjoint from K.]
- 19. Let X be compact, and $f: X \to Y$ continuous. Then f(X) is compact. [If $\{U_{\alpha}\}$ is an open cover of f(X), then $\{f^{-1}(U_{\alpha})\}$ is an open cover of X.]

- 20. Any sequence in a compact metric space has a convergent subsequence. [For a sequence $\{x_n\}$ consider the sets $E_k = \{x_k, x_{k+1}, \ldots\}$. Then the closures $[E_k]$ form a centered system.]
- 21. A metric space R is compact if and only if it is complete and totally bounded. [If $\{U_{\alpha}\}\ give an open cover of R which has no finite subcover, then the total boundedness$ $can be used to obtain a nested sequence <math>A_1 \supset A_2 \supset \ldots$ of closed subsets of R with diameters going to zero, and such that no A_i is covered by a finite subcollection of the $\{U_{\alpha}\}$. Get a contradiction by looking at a point in the intersection of all the A_i .]
- 22. A subset M ⊂ C_[0,1], with the distance ρ(f,g) = sup_{x∈[0,1]} |f(x) g(x)| is totally bounded, if and only if it is uniformly bounded and equicontinuous.
 [If M is totally bounded, then for any ε > 0 you can find functions f₁,..., f_k approximating any element of M within ε. The uniform continuity of the f_i can then be used to prove equicontinuity of M. To show total boundedness of M, use piecewise linear approximations to approximate functions in M.]
- 23. If $F : X \to \mathbf{R}$ is continuous, and the metric space X is compact, then F is uniformly continuous. [Fix $\epsilon > 0$, and for every x find a ball B_{r_x} in which F can change at most ϵ (using continuity). Cover X by finitely many of the balls $B_{r_x/2}$ with half the radius, and show that if $\rho(y, z) < r/2$, where r is the smallest radius, then $y, z \in B_{r_x}$ for some x.]
- 24. If F: X → R is continuous and X is compact, then F(X) is bounded, and F achieves its infimum and supremum.
 [F(X) is compact, so it is closed and bounded.]
- 25. If $F: X \to \mathbf{R}$ is lower semicontinuous and X is compact, then F(X) is bounded from below, and F achieves its infimum. [For every x, we have f(y) > f(x) - 1 for y in a neighborhood of x. Find a finite cover with such neighborhoods to get a lower bound for F(X). To show that the infimum is achieved, find a sequence x_n such that $F(x_n) \to \inf F(X)$, and show that a subsequence of $\{x_n\}$ converges to some x with $F(x) = \inf F(X)$.]
- 26. If V is a normed linear space and $W \subset V$ is a closed subspace, then the quotient V/W is also a normed linear space with the norm

$$||[x]||_{V/W} = \inf\{||x - y||_V; y \in W\}.$$

[The main thing to check is that if ||[x]|| = 0, then $x \in W$. This uses that W is closed.]

27. If a linear functional f: V → R on a normed linear space is continuous at a point, then it is continuous everywhere.
[If f is continuous at a point x₀, and you want to check continuity at a point x, then use that f(y) - f(x) = f(x₀ + y - x) - f(x₀), since f is linear. So if ||y - x|| is small, you can use

the continuity at x_0 to control f(y) - f(x).

- 28. A linear functional f : V → R on a normed linear space is continuous if and only if it is bounded.
 [Bounded ⇒ Continuous is easy. Conversely by continuity at 0, there is a δ > 0 such that ||f(x)|| < 1 whenever ||x|| < δ. Using the linearity of f this shows that f is bounded.]
- 29. If V is a normed linear space, then its conjugate space V^* is complete, i.e. it is a Banach space.

[Similar to showing that $C_{[a,b]}$ is complete with respect to the sup norm. If f_n is a Cauchy sequence in V^* , then show that $f_n(x)$ is a Cauchy sequence of real numbers for every $x \in V$. This way you can define a limit $f(x) = \lim_{n\to\infty} f_n(x)$. One still needs to show that $f \in V^*$, and that $f_n \to f$ in V^* .]

30. If V is a normed linear space and x ∈ V a non-zero element, then there is a continuous linear functional f ∈ V* such that ||f|| = 1 and f(x) = ||x||.
[You can first find such an f on the span of x, and then extend it to all of V using the Hahn-Banach theorem.]