A list of statements/theorems that you should be able to prove, together with the
main idea of the proof for some of them.

1. If f: X =Y isamapand Ay, As C X, By, Bs CY are subsets, then
FHBINBy) = f7H(B1) N fH(By)

FTHBL1UBy) = fH(B1) U f(By)
f(A1U Ag) = f(A1) U f(A2).

2. If A and B are countable sets, then A x B is countable.
[If you write the elements of A x B in a grid, you can list them by following diagonals.]

3. The set of rationals is countable.
[You can write Q as a subset of Z x Z and use the previous result/

4. The set of infinite sequences whose elements are all 0 or 1 is uncountable.
[If you list a countable collection of such sequences, you can always construct a new sequence
which differs from all the ones in the list]

5. Suppose that M, N are subsets of a metric space X. The closure operation satisfies the
following properties:

(a) If M C N then [M] C [N].
(b) ([M]] = [M].

(¢) [MUN] = [M]U[N].

(@) 0] = 0.

6. Closed and open subsets of a metric space satisfy the following properties:
(a
(b

(c
(d

The intersection of an arbitrary collection of closed sets is closed.
The union of finitely many closed sets is closed.

The intersection of finitely many open sets is open.

~ — —

The union of an arbitrary collection of open sets is open.

7. A subset M C R in a metric space R is open if and only if the complement R\ M is closed.
[A point x € M is an interior point of M if and only if x is not a contact point for R\ M.]

8. Every convergent sequence in a metric space is a Cauchy sequence.
[If p(xn,x) < €/2 and p(zm,x) < €/2 then p(xy, Tm) < € by the triangle inequality.]

9. (Nested sphere theorem) Let R be a complete metric space, and B, (z)) a sequence of closed
balls in R such that B o
By, (z1) D Bry(x2) D ...,

and 7, — 0 as k — oo. Then the intersection ;5 B, (z) is non-empty.
[Show that {x} is a Cauchy sequence. The limit must be in all of the balls because they are
closed.]
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(Baire’s theorem) Let R be a complete metric space, and suppose that

R = [j Ay
k=1

for a sequence of subsets Ay C R. Then it is not possible that all of the Ay are nowhere
dense.

[Tt a set A is nowhere dense, then every closed ball B in R contains a smaller closed ball
B' C B which is disjoint from A. Use this to obtain a nested sequence of closed balls By D
By D ..., such that By is disjoint from Ay, and apply the nested sphere theorem.]

Let R be a complete metric space, and F': R — R a map such that for some o < 1 we have

p(F(z), F(y)) < ap(z,y)

for all ,y € R. Then there exists a unique point € R for which F(z) = z.
[Pick any o € R and define x,, inductively by x, = F(x,—1). Use the contraction property
to show that this sequence is a Cauchy sequence, and the limit is a fized point of F'.]

A map f: X — Y between topological spaces is continuous, if and only if f~!(U) is open for
every open set U C Y.

The interval [0, 1] is connected.

[If U C [0,1] is non-empty, open and closed, then show that supU = 1, and so 1 € U. The
same is true for the complement of U. So we cannot write [0,1] as the disjoint union of two
non-empty open subsets.]

If a topological space X is path connected, then it is connected.

[If X were not connected, then X = U UV for two non-empty disjoint open subsets. Get
a contradiction by connecting points x € U and y € V using a path, and using that [0,1] is
connected. |

Let f: X — Y be continuous, and suppose that X is connected. Then f(X) is connected.
[If f(X) = UUV with U and V disjoint, then X = f~HU)Uf~HV) with f~Y(U) and f~1(V)
disjoint.]

A topological space X is compact if and only if every centered system of closed sets in X has
non-empty intersection.

If X is compact and F' C X is closed, then F' is compact.
[If {Uu} is an open cover of F, then {U,} together with X \ F' gives an open cover of X ]

Suppose that X is a Hausdorff space, and K C X is compact. Then K is closed.

[Suppose y & K. For all x € K there are disjoint open neighborhoods x € U, and y €
Vi. Finitely many of the Uy, cover K, so the intersection of the corresponding sets V, is a
neighborhood of y disjoint from K.]

Let X be compact, and f : X — Y continuous. Then f(X) is compact.
[If {U.} is an open cover of f(X), then {f~1(U,)} is an open cover of X.]
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Any sequence in a compact metric space has a convergent subsequence.
[For a sequence {xy} consider the sets Ey = {xk,Tk+t1,...}. Then the closures [Ex] form a
centered system.]

A metric space R is compact if and only if it is complete and totally bounded.

[If {Us} give an open cover of R which has no finite subcover, then the total boundedness
can be used to obtain a nested sequence A1 O As D ... of closed subsets of R with diameters
going to zero, and such that no A; is covered by a finite subcollection of the {Uy}. Get a
contradiction by looking at a point in the intersection of all the A;.]

A subset M C Cjo 1), with the distance p(f, g) = sup,cp 1) |f(2) — g(z)| is totally bounded, if
and only if it is uniformly bounded and equicontinuous.

[If M is totally bounded, then for any € > 0 you can find functions fi,..., fr approrimating
any element of M within €. The uniform continuity of the f; can then be used to prove
equicontinuity of M.

To show total boundedness of M, use piecewise linear approximations to approrimate functions
in M.]

If F: X — R is continuous, and the metric space X is compact, then F' is uniformly
continuous.

[Fiz e > 0, and for every x find a ball By, in which F' can change at most € (using continuity).
Cover X by finitely many of the balls B,._ /o with half the radius, and show that if p(y, z) < 1/2,
where r is the smallest radius, then y,z € B, for some x.]

If F: X — R is continuous and X is compact, then F(X) is bounded, and F' achieves its
infimum and supremum.
[ F(X) is compact, so it is closed and bounded.]

If F: X — R is lower semicontinuous and X is compact, then F(X) is bounded from below,
and F' achieves its infimum.

[For every x, we have f(y) > f(x) — 1 fory in a neighborhood of x. Find a finite cover with
such neighborhoods to get a lower bound for F(X). To show that the infimum is achieved, find
a sequence T, such that F(x,) — inf F(X), and show that a subsequence of {x,} converges
to some x with F(z) = inf F(X).]

If V is a normed linear space and W C V is a closed subspace, then the quotient V/W is also
a normed linear space with the norm

[z]llvw = mf{[lz —yllv; y € W}

[The main thing to check is that if ||[z]|| = 0, then x € W. This uses that W is closed.]

If a linear functional f : V' — R on a normed linear space is continuous at a point, then it is
continuous everywhere.

[If f is continuous at a point xo, and you want to check continuity at a point x, then use that
fly) = f(z) = fxo+y —x) — f(x0), since f is linear. So if ||y — x| is small, you can use
the continuity at xo to control f(y) — f(x).]
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A linear functional f : V' — R on a normed linear space is continuous if and only if it is
bounded.

[Bounded = Continuous is easy. Conversely by continuity at 0, there is a § > 0 such that
| f(z)|| <1 whenever ||z|| < 0. Using the linearity of f this shows that f is bounded.]

If V is a normed linear space, then its conjugate space V* is complete, i.e. it is a Banach
space.

[Similar to showing that C,y) is complete with respect to the sup norm. If f, is a Cauchy
sequence in V*, then show that fy,(x) is a Cauchy sequence of real numbers for every x € V.
This way you can define a limit f(x) = limy, o0 fn(z). One still needs to show that f € V*,
and that f, — f in V*.]

If V is a normed linear space and x € V' a non-zero element, then there is a continuous linear
functional f € V* such that ||f]| =1 and f(z) = ||z|.

[You can first find such an f on the span of x, and then extend it to all of V using the
Hahn-Banach theorem.]



